Nonlinear Scalespace via Hierarchical Statistical Modeling

نویسندگان

  • David Shulman
  • Tomas Brodsky
چکیده

Nonlinear scalespace should be based on a hierarchical statistical model of the image intensity function. This model should contain an explicit representation of the multiscale structure of edges and corners. Using this model we can have a non-ad-hoc basis for computing the parameters we need to determine how much smoothing we should do at points that appear to be edge points. We also have a basis for computing the apparent error in our scalespace calculations. Hierarchical statistical modeling is a technique that can be applied to other problems in low-level vision, but in this introductory paper we just present the application of our scalespace theory to image smoothing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Models for Multivariate Neural Point Processes: Collective Dynamics and Neural Decoding

This chapter reviews a stochastic point process framework for the modeling, analysis and decoding of neuronal ensembles. The spiking probability of any neuron in an ensemble is computed recursively via a system of stochastic nonlinear equations with delays in discrete time. These equations are expressed in terms of conditional intensity functions, which capture the effects of the neuron’s own s...

متن کامل

Simulation of Long-term Returns with Stochastic Correlations

This paper focuses on a nonlinear stochastic model for financial simulation and forecasting based on assumptions of multivariate stochastic correlation, with an application to the European market. We present in particular the key elements of a structured hierarchical econometric model that can be used to forecast financial and commodity markets relying on statistical and simulation methods. The...

متن کامل

Hierarchical Distributed Representations for Statistical Language Modeling

Statistical language models estimate the probability of a word occurring in a given context. The most common language models rely on a discrete enumeration of predictive contexts (e.g., n-grams) and consequently fail to capture and exploit statistical regularities across these contexts. In this paper, we show how to learn hierarchical, distributed representations of word contexts that maximize ...

متن کامل

Introductory Guide to HLM With HLM 7 Software

H LM software has been one of the leading statistical packages for hierarchical linear modeling due to the pioneering work of Stephen Raudenbush and Anthony Bryk, who created the software and authored the leading text on hierarchical linear and nonlinear modeling (Bryk & Raudenbush, 1992; Raudenbush & Bryk, 2002). Though differences among software packages’ capabilities have diminished over tim...

متن کامل

Topological properties of hierarchical networks.

Hierarchical networks are attracting a renewal interest for modeling the organization of a number of biological systems and for tackling the complexity of statistical mechanical models beyond mean-field limitations. Here we consider the Dyson hierarchical construction for ferromagnets, neural networks, and spin glasses, recently analyzed from a statistical-mechanics perspective, and we focus on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994